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Outline

• The economic dispatch model
• Competitive market equilibrium
• Modeling market equilibrium as an optimization problem
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What is economic dispatch?

• Simplest resource allocation problem in electricity markets
• Model used in real-time electricity markets

• Uniform price auctions
• Repeated every five to fifteen minutes
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An example
Consider the offers in the figure
1. Write the problem as a linear program
2. Write out the ΚΚΤ conditions of the problem
3. Split the ΚΚΤ conditions into three categories, 

depending on whether they correspond to
1. A surplus maximization problem of buyers 

(quantity adjustment)
2. A profit maximization problem of sellers (quantity 

adjustment)
3. Market clearing conditions (price adjustment)

4. Propose a primal-dual optimal solution and 
confirm that it is optimal using the ΚΚΤ 
conditions

5. Confirm that the market clearing price is 
indeed consistent with agent incentives
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Question 1: linear program

The economic dispatch model is described as follows:

max𝑝𝑝,𝑑𝑑90 � 𝑑𝑑1 + 40 � 𝑑𝑑2 + 20 � 𝑑𝑑3 − (12 � 𝑝𝑝1 + 28 � 𝑝𝑝2 + 80 � 𝑝𝑝3)
𝜆𝜆 : 𝑑𝑑1 + 𝑑𝑑2 + 𝑑𝑑3 − 𝑝𝑝1 − 𝑝𝑝2 − 𝑝𝑝3 = 0

𝜇𝜇1 : 𝑝𝑝1 ≤ 30
𝜇𝜇2 : 𝑝𝑝2 ≤ 35
𝜇𝜇3 : 𝑝𝑝3 ≤ 25
𝜈𝜈1 : 𝑑𝑑1 ≤ 10
𝜈𝜈2 : 𝑑𝑑2 ≤ 40
𝑣𝑣3 : 𝑑𝑑3 ≤ 25

𝑝𝑝, 𝑑𝑑 ≥ 0
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Questions 2, 3: ΚΚΤ conditions and their 
decomposition
Market clearing:

𝑑𝑑1 + 𝑑𝑑2 + 𝑑𝑑3 − 𝑝𝑝1 − 𝑝𝑝2 − 𝑝𝑝3 = 0
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Questions 2, 3: ΚΚΤ conditions and their 
decomposition
Profit maximization of sellers:

0 ≤ 𝜇𝜇1 ⊥ 30 − 𝑝𝑝1 ≥ 0
0 ≤ 𝜇𝜇2 ⊥ 35 − 𝑝𝑝2 ≥ 0
0 ≤ 𝜇𝜇3 ⊥ 25 − 𝑝𝑝3 ≥ 0

0 ≤ 𝑝𝑝1 ⊥ 12 + 𝜇𝜇1 − 𝜆𝜆 ≥ 0
0 ≤ 𝑝𝑝2 ⊥ 28 + 𝜇𝜇2 − 𝜆𝜆 ≥ 0
0 ≤ 𝑝𝑝3 ⊥ 80 + 𝜇𝜇3 − 𝜆𝜆 ≥ 0
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Questions 2, 3: ΚΚΤ conditions and their 
decomposition
Surplus maximization of buyers:

0 ≤ 𝜈𝜈1 ⊥ 10 − 𝑑𝑑1 ≥ 0
0 ≤ 𝜈𝜈2 ⊥ 40 − 𝑑𝑑2 ≥ 0
0 ≤ 𝜈𝜈3 ⊥ 25 − 𝑑𝑑3 ≥ 0

0 ≤ 𝑑𝑑1 ⊥ −90 + 𝜈𝜈1 + 𝜆𝜆 ≥ 0
0 ≤ 𝑑𝑑2 ⊥ −40 + 𝜈𝜈2 + 𝜆𝜆 ≥ 0
0 ≤ 𝑑𝑑3 ⊥ −20 + 𝜈𝜈3 + 𝜆𝜆 ≥ 0
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Question 4: prima-dual optimal solution

Primal optimal solution:
𝑝𝑝1

∗ = 30, 𝑝𝑝2
∗ = 20, 𝑝𝑝3

∗ = 0
𝑑𝑑1

∗ = 10, 𝑑𝑑2
∗ = 40, 𝑑𝑑3

∗ = 0

Dual optimal solution:
𝜆𝜆∗ = 28

𝜇𝜇1
∗ = 16, 𝜇𝜇2

∗ = 0, 𝜇𝜇3
∗ = 0

𝜈𝜈1
∗ = 62, 𝜈𝜈2

∗ = 12, 𝜈𝜈3
∗ = 0

We note that all ΚΚΤ conditions are satisfied
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Question 5: checking the incentives of agents

• From the point of view of producers:
• Producer 1 is in the money and therefore wants to produce 𝑝𝑝1

∗ = 30
• Producer 2 is at the money and therefore indifferent about producing 𝑝𝑝2

∗ =
20

• Producer 3 is out of the money and therefore wants to produce 𝑝𝑝3
∗ = 0

• Similarly for consumers
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The economic dispatch model
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Welfare maximizing economic dispatch

max𝑝𝑝,𝑑𝑑 �
𝑙𝑙∈𝐿𝐿

�
0

𝑑𝑑𝑙𝑙
𝑀𝑀𝑀𝑀𝑙𝑙 𝑥𝑥 𝑑𝑑𝑥𝑥 − �

𝑔𝑔∈𝐺𝐺

�
0

𝑝𝑝𝑔𝑔
𝑀𝑀𝑀𝑀𝑔𝑔 𝑥𝑥 𝑑𝑑𝑥𝑥

𝜆𝜆 : �
𝑙𝑙∈𝐿𝐿

𝑑𝑑𝑙𝑙 − �
𝑔𝑔∈𝐺𝐺

𝑝𝑝𝑔𝑔 ≤ 0

𝜈𝜈𝑙𝑙 : 𝑑𝑑𝑙𝑙 ≤ 𝐷𝐷𝑙𝑙 , 𝑙𝑙 ∈ 𝐿𝐿

𝜇𝜇𝑔𝑔 : 𝑝𝑝𝑔𝑔 ≤ 𝑃𝑃𝑔𝑔, 𝑔𝑔 ∈ 𝐺𝐺

𝑝𝑝𝑔𝑔 ≥ 0, 𝑔𝑔 ∈ 𝐺𝐺, 𝑑𝑑𝑙𝑙 ≥ 0, 𝑙𝑙 ∈ 𝐿𝐿

Increasing marginal cost function 𝑀𝑀𝑀𝑀𝑔𝑔(�), decreasing marginal benefit 
function 𝑀𝑀𝑀𝑀𝑙𝑙(�)
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ΚΚΤ conditions

0 ≤ 𝑝𝑝𝑔𝑔 ⊥ −𝜆𝜆 + 𝑀𝑀𝑀𝑀𝑔𝑔 𝑝𝑝𝑔𝑔 + 𝜇𝜇𝑔𝑔 ≥ 0, 𝑔𝑔 ∈ 𝐺𝐺

0 ≤ 𝑑𝑑𝑙𝑙 ⊥ 𝜆𝜆 − 𝑀𝑀𝑀𝑀𝑙𝑙 𝑑𝑑𝑙𝑙 + 𝜈𝜈𝑙𝑙 ≥ 0, 𝑙𝑙 ∈ 𝐿𝐿

0 ≤ 𝜇𝜇𝑔𝑔 ⊥ 𝑃𝑃𝑔𝑔 − 𝑝𝑝𝑔𝑔 ≥ 0, 𝑔𝑔 ∈ 𝐺𝐺

0 ≤ 𝜈𝜈𝑙𝑙 ⊥ 𝐷𝐷𝑙𝑙 − 𝑑𝑑𝑙𝑙 ≥ 0, 𝑙𝑙 ∈ 𝐿𝐿

0 ≤ 𝜆𝜆 ⊥ �
𝑔𝑔∈𝐺𝐺

𝑝𝑝𝑔𝑔 − �
𝑙𝑙∈𝐿𝐿

𝑑𝑑𝑙𝑙 ≥ 0
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System lambda

There exists a threshold 𝜆𝜆 such that:
• If 0 < 𝑝𝑝𝑔𝑔 < 𝑃𝑃𝑔𝑔), then 𝑀𝑀𝑀𝑀𝑔𝑔 𝑝𝑝𝑔𝑔 = 𝜆𝜆. If 0 < 𝑑𝑑𝑙𝑙 < 𝐷𝐷𝑙𝑙), then 𝑀𝑀𝑀𝑀𝑙𝑙 𝑑𝑑𝑙𝑙 = 𝜆𝜆.
• If 𝑝𝑝𝑔𝑔 = 0, then 𝑀𝑀𝑀𝑀𝑔𝑔 0 ≥ 𝜆𝜆. If 𝑑𝑑𝑙𝑙 = 0, then 𝑀𝑀𝑀𝑀𝑙𝑙 0 ≤ 𝜆𝜆.
• If 𝑝𝑝𝑔𝑔 = 𝑃𝑃𝑔𝑔, then 𝑀𝑀𝑀𝑀𝑔𝑔 𝑃𝑃𝑔𝑔 ≤ 𝜆𝜆. If 𝑑𝑑𝑙𝑙 = 𝐷𝐷𝑙𝑙, then 𝑀𝑀𝑀𝑀𝑙𝑙 𝐷𝐷𝑙𝑙 ≥ 𝜆𝜆.

Proof: ΚΚΤ conditions

• System lambda: marginal cost of the marginal generating unit (i.e. the 
generating unit which will supply the next unit of power at lowest 
cost)
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Interpretation of ΚΚΤ conditions

Optimal solution is matching cheapest generators with consumers who 
have greatest valuation (can you see why from the KKT conditions?)
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Graphical illustration of KKT conditions
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Competitive market equilibrium
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Path to deregulation

• Late 1970s: power systems are operated as vertically integrated regulated 
monopolies

• Before 1980s: Premature markets (e.g. Norway)
• 1982: Chile introduces a sport market
• 1988: British government privatizes public power sector in England and 

Wales
• 1990: Nordic market expands to include Sweden, Finland and Denmark
• New Zealand and Australia introduced spot markets
• The United States follow with California (CAISO), Pennsylvania-New Jersey-

Maryland (PJM), Texas (ERCOT), New York (NYISO) and the Midwest (MISO)
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Trading in real time
• Real-time markets cannot rely on bilateral negotiations (only takes a few minutes 

of imbalance for a blackout
• ... but they can rely on a uniform price auction that charges system lambda for 

power
• But why is system lambda the “right” price?
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Definition of competitive market

• A market is competitive if:
• Agents are price-taking
• Variable cost is convex and the benefit is concave (which implies that marginal 

cost is? marginal benefit is?)
• Agents have access to public information (prices)
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Aggregate and marginal cost
• Aggregate cost is the cheapest way to produce 𝑄𝑄 MW of power among a collection of producers

𝑇𝑇𝑀𝑀𝐺𝐺 𝑄𝑄 = min𝑝𝑝 �
𝑔𝑔∈𝐺𝐺

�
0

𝑝𝑝𝑔𝑔
𝑀𝑀𝑀𝑀𝑔𝑔 𝑥𝑥 𝑑𝑑𝑥𝑥

s. t. �
𝑔𝑔∈𝐺𝐺

𝑝𝑝𝑔𝑔 = 𝑄𝑄

𝑝𝑝𝑔𝑔 ∈ dom 𝑀𝑀𝑀𝑀𝑔𝑔, 𝑔𝑔 ∈ 𝐺𝐺

Marginal cost: 𝑀𝑀𝑀𝑀𝐺𝐺 𝑄𝑄 = 𝑇𝑇𝑀𝑀𝐺𝐺
′ (𝑄𝑄)

• Constraints imposed through domain of objective function (last constraint)
• What do we know about 𝑀𝑀𝑀𝑀 in competitive markets?
• What is the unit of measurement of 𝑇𝑇𝑀𝑀 and 𝑀𝑀𝑀𝑀?
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Merit order curve

Merit order curve: (increasing) system marginal cost curve
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Aggregate and marginal benefit

Aggregate benefit is most beneficial way to consume 𝑄𝑄 ΜW of power among a collection 
of consumers

𝑇𝑇𝑀𝑀𝐿𝐿 𝑄𝑄 = max𝑑𝑑 �
𝑙𝑙∈𝐿𝐿

�
0

𝑑𝑑𝑙𝑙
𝑀𝑀𝑀𝑀𝑙𝑙 𝑥𝑥 𝑑𝑑𝑥𝑥

s. t. �
𝑙𝑙∈𝐿𝐿

𝑑𝑑𝑙𝑙 = 𝑄𝑄

𝑑𝑑𝑙𝑙 ∈ dom 𝑀𝑀𝑀𝑀𝑙𝑙 , 𝑙𝑙 ∈ 𝐿𝐿

Marginal benefit: 𝑀𝑀𝑀𝑀𝑙𝑙 𝑄𝑄 = 𝑇𝑇𝑀𝑀𝐿𝐿
′ (𝑄𝑄)
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Price and quantity adjustment

Mechanical system dynamics are 
governed by Newton’s laws of 
motion

Price adjustment and quantity 
adjustment are the “laws of 
motion” for electricity markets
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Price adjustment: graphical illustration

Any price different from 𝜆𝜆∗ creates opportunities for profitable trade
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Price adjustment: mathematical description

When demand exceeds supply, upward pressure on prices
When supply exceeds demand, downward pressure on prices

Market clearing condition:

0 ≤ 𝜆𝜆 ⊥ �
𝑔𝑔∈𝐺𝐺

𝑝𝑝𝑔𝑔 − �
𝑙𝑙∈𝐿𝐿

𝑑𝑑𝑙𝑙 ≥ 0
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Quantity adjustment
Price-taking supplier will 
increase quantity produced if 
marginal cost ≤ price, decrease 
output otherwise:

max𝑝𝑝 𝜆𝜆 � 𝑝𝑝𝑔𝑔 − �
0

𝑝𝑝𝑔𝑔
𝑀𝑀𝑀𝑀𝑔𝑔 𝑥𝑥 𝑑𝑑𝑥𝑥

𝜇𝜇𝑔𝑔 : 𝑝𝑝𝑔𝑔 ≤ 𝑃𝑃𝑔𝑔

𝑝𝑝𝑔𝑔 ≥ 0
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Price-taking consumer will 
decrease quantity consumed if 
marginal benefit ≤ price, increase 
consumption otherwise:

max𝑑𝑑 �
0

𝑑𝑑𝑙𝑙
𝑀𝑀𝑀𝑀𝑙𝑙 𝑥𝑥 𝑑𝑑𝑥𝑥 − 𝜆𝜆 � 𝑑𝑑𝑙𝑙

𝜈𝜈𝑙𝑙 : 𝑑𝑑𝑙𝑙 ≤ 𝐷𝐷𝑙𝑙

𝑑𝑑𝑙𝑙 ≥ 0
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Equilibrium, market clearing price, competitive
equilibrium, competitive price
• A market is in equilibrium when no profitable opportunities for trade 

exist
• The market clearing price is the price of a market in equilibrium
• An equilibrium in a competitive market is called a competitive 

equilibrium
• The price of a competitive market is the competitive price
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Competitive markets are efficient
The competitive equilibrium results in an allocation which is optimal for the economic dispatch problem

Proof: Collect KKT conditions of quantity adjustment and market clearing condition of price adjustment:
0 ≤ 𝑝𝑝𝑔𝑔 ⊥ −𝜆𝜆 + 𝑀𝑀𝑀𝑀𝑔𝑔 𝑝𝑝𝑔𝑔 + 𝜇𝜇𝑔𝑔 ≥ 0, 𝑔𝑔 ∈ 𝐺𝐺

0 ≤ 𝜇𝜇𝑔𝑔 ⊥ 𝑃𝑃𝑔𝑔 − 𝑝𝑝𝑔𝑔 ≥ 0, 𝑔𝑔 ∈ 𝐺𝐺

0 ≤ 𝑑𝑑𝑙𝑙 ⊥ 𝜆𝜆 − 𝑀𝑀𝑀𝑀𝑙𝑙 𝑑𝑑𝑙𝑙 + 𝜈𝜈𝑙𝑙 ≥ 0, 𝑙𝑙 ∈ 𝐿𝐿

0 ≤ 𝜈𝜈𝑙𝑙 ⊥ 𝐷𝐷𝑙𝑙 − 𝑑𝑑𝑙𝑙 ≥ 0, 𝑙𝑙 ∈ 𝐿𝐿

0 ≤ 𝜆𝜆 ⊥ �
𝑔𝑔∈𝐺𝐺

𝑝𝑝𝑔𝑔 − �
𝑙𝑙∈𝐿𝐿

𝑑𝑑𝑙𝑙 ≥ 0

Identical to KKT conditions of economic dispatch
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Producer and consumer surplus, welfare, 
efficiency
Suppose price is 𝜆𝜆

• Producer surplus/profit: profit of producers who are willing to sell

𝜆𝜆𝑞𝑞𝐺𝐺 𝜆𝜆 − �
0

𝑞𝑞𝐺𝐺 𝜆𝜆
𝑀𝑀𝑀𝑀𝐺𝐺 𝑥𝑥 𝑑𝑑𝑥𝑥

where 𝑞𝑞𝐺𝐺 𝜆𝜆 is quantity sold at price 𝜆𝜆

• Consumer surplus: surplus of consumers who are willing to buy

�
0

𝑞𝑞𝐿𝐿 𝜆𝜆
𝑀𝑀𝑀𝑀𝐿𝐿 𝑥𝑥 𝑑𝑑𝑥𝑥 − 𝜆𝜆𝑞𝑞𝐿𝐿 𝜆𝜆

where 𝑞𝑞𝐿𝐿 𝜆𝜆 is quantity bought at price 𝜆𝜆

• Welfare: sum of producer and consumer surplus
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Graphical illustration of surplus

A. Papavasiliou, NTUA 31



Modeling market equilibrium as 
an optimization problem
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Separable optimization
Consider the following problem

Sep : max𝑥𝑥 �
𝑖𝑖=1

𝑛𝑛

𝑓𝑓𝑖𝑖 𝑥𝑥𝑖𝑖

𝜌𝜌𝑖𝑖 : 𝑔𝑔𝑖𝑖 𝑥𝑥𝑖𝑖 ≤ 0, 𝑖𝑖 = 1, … , 𝑛𝑛

𝜆𝜆 : �
𝑖𝑖=1

𝑛𝑛

ℎ𝑖𝑖 𝑥𝑥𝑖𝑖 ≤ 0

• 𝑥𝑥𝑖𝑖 ∈ ℝ𝑛𝑛: private decisions
• 𝑓𝑓𝑖𝑖: ℝ𝑛𝑛𝑖𝑖 → ℝ: concave differentiable
• 𝑔𝑔𝑖𝑖: ℝ𝑛𝑛𝑖𝑖 → ℝ𝑎𝑎𝑖𝑖 and ℎ𝑖𝑖: ℝ𝑛𝑛𝑖𝑖 → ℝ𝑚𝑚: convex differentiable

Interpretation
• 𝑚𝑚 limited resources/commodities, 𝑛𝑛 agents
• Each agent decides 𝑥𝑥𝑖𝑖, uses ℎ𝑖𝑖 𝑥𝑥𝑖𝑖 of each of 𝑚𝑚 resources
• For each resource, total consumption ≤ total production
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ΚΚΤ conditions

• Denote
• 𝛻𝛻𝑥𝑥𝑖𝑖𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖) ∈ ℝ𝑛𝑛𝑖𝑖: gradient of 𝑓𝑓𝑖𝑖
• 𝛻𝛻𝑥𝑥𝑖𝑖𝑔𝑔𝑖𝑖 𝑥𝑥𝑖𝑖 ∈ ℝ𝑎𝑎𝑖𝑖 × ℝ𝑛𝑛𝑖𝑖: Jacobian matrix of 𝑔𝑔𝑖𝑖 (likewise for 𝛻𝛻𝑥𝑥𝑖𝑖ℎ𝑖𝑖(𝑥𝑥𝑖𝑖))

• ΚΚΤ conditions of (𝑆𝑆𝑆𝑆𝑝𝑝):

−𝛻𝛻𝑥𝑥𝑖𝑖𝑓𝑓𝑖𝑖 𝑥𝑥𝑖𝑖 + 𝛻𝛻𝑥𝑥𝑖𝑖𝑔𝑔𝑖𝑖 𝑥𝑥𝑖𝑖
𝑇𝑇

𝜌𝜌𝑖𝑖 − 𝛻𝛻𝑥𝑥𝑖𝑖ℎ𝑖𝑖 𝑥𝑥𝑖𝑖
𝑇𝑇

𝜆𝜆 = 0, 𝑖𝑖 = 1, … , 𝑛𝑛

0 ≤ 𝜌𝜌𝑖𝑖 ⊥ −𝑔𝑔𝑖𝑖 𝑥𝑥𝑖𝑖 ≥ 0, 𝑖𝑖 = 1, … , 𝑛𝑛

0 ≤ 𝜆𝜆 ⊥ − �
𝑖𝑖=1

𝑛𝑛

ℎ𝑖𝑖 𝑥𝑥𝑖𝑖 ≥ 0
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Market for multiple commodities

• Consider a competitive market for the 𝑚𝑚 resources:
• Producers are paid 𝜆𝜆𝑗𝑗 for selling commodity 𝑗𝑗
• Consumers pay 𝜆𝜆𝑗𝑗 for buying commodity 𝑗𝑗
• Each agent accepts price vector 𝜆𝜆∗ as given (not influenced by private 

decisions)

• Denote 𝑞𝑞𝑖𝑖 as vector of resources procured (or sold, if negative) by 
agent 𝑖𝑖, then each agent solves:

(Profit-i): max𝑥𝑥𝑖𝑖,𝑞𝑞𝑖𝑖(𝑓𝑓𝑖𝑖 𝑥𝑥𝑖𝑖 − (𝜆𝜆∗)𝑇𝑇𝑞𝑞𝑖𝑖)
𝜌𝜌𝑖𝑖 : 𝑔𝑔𝑖𝑖 𝑥𝑥𝑖𝑖 ≤ 0
𝜆𝜆𝑖𝑖 : ℎ𝑖𝑖 𝑥𝑥𝑖𝑖 = 𝑞𝑞𝑖𝑖
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Competitive equilibrium (for multiple products): combination of prices
𝜆𝜆∗, agent decisions 𝑥𝑥𝑖𝑖

∗, commodity procurements 𝑞𝑞𝑖𝑖
∗, such that:

• (𝑥𝑥𝑖𝑖
∗, 𝑞𝑞𝑖𝑖

∗) solve (Profit − 𝑖𝑖) given 𝜆𝜆∗, and
• Market clearing holds:

0 ≤ 𝜆𝜆∗ ⊥ �
𝑖𝑖=1

𝑛𝑛

𝑞𝑞𝑖𝑖
∗ ≤ 0
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Modeling competitive market equilibrium via
optimization
• Suppose KKT conditions are necessary and sufficient for the 

optimality of (𝑆𝑆𝑆𝑆𝑝𝑝) and (Profit − 𝑖𝑖):
1. A competitive market equilibrium results in an optimal solution of (𝑆𝑆𝑆𝑆𝑝𝑝), 

and
2. a primal-dual solution to the KKT conditions of (𝑆𝑆𝑆𝑆𝑝𝑝) is a competitive 

equilibrium
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Proof
• Necessary and sufficient KKT conditions of (Profit − 𝑖𝑖):

−𝛻𝛻𝑥𝑥𝑖𝑖𝑓𝑓𝑖𝑖 𝑥𝑥𝑖𝑖 + 𝛻𝛻𝑥𝑥𝑖𝑖𝑔𝑔𝑖𝑖 𝑥𝑥𝑖𝑖
𝑇𝑇

𝜌𝜌𝑖𝑖 − 𝛻𝛻𝑥𝑥𝑖𝑖ℎ𝑖𝑖 𝑥𝑥𝑖𝑖
𝑇𝑇

𝜆𝜆 = 0

𝜆𝜆∗ − 𝜆𝜆 = 0

0 ≤ 𝜌𝜌𝑖𝑖 ⊥ −𝑔𝑔𝑖𝑖 𝑥𝑥𝑖𝑖 ≥ 0

ℎ𝑖𝑖 𝑥𝑥𝑖𝑖 = 𝑞𝑞𝑖𝑖

• Proceed by comparing KKT conditions of:
• (Profit − 𝑖𝑖) for all 𝑖𝑖 and market clearing condition
• (𝑆𝑆𝑆𝑆𝑝𝑝)
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Example: 2-agent oligopoly
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Consider the following market:
• Linear marginal benefit function, 𝑀𝑀𝑀𝑀 𝑄𝑄 = 𝑎𝑎 − 𝑏𝑏 ⋅ 𝑄𝑄
• Two agents, with identical cost functions 𝑇𝑇𝑀𝑀1 and 𝑇𝑇𝑀𝑀2

Competitive market equilibrium obtained by solving:

max𝑝𝑝1,𝑝𝑝2,𝑑𝑑𝑎𝑎 ⋅ 𝑑𝑑 − 0.5 ⋅ 𝑏𝑏 ⋅ 𝑑𝑑2 − 𝑇𝑇𝑀𝑀1 𝑝𝑝1 − 𝑇𝑇𝑀𝑀2(𝑝𝑝2)

𝑝𝑝1 + 𝑝𝑝2 = 𝑑𝑑

𝑝𝑝1, 𝑝𝑝2, 𝑑𝑑 ≥ 0
If 𝑝𝑝1, 𝑝𝑝2 > 0 and 𝑝𝑝1 = 𝑝𝑝2 (since agents are symmetric), then

𝑀𝑀𝑀𝑀1 𝑝𝑝1 = 𝑀𝑀𝑀𝑀2 𝑝𝑝2 = 𝑎𝑎 − 𝑏𝑏 ⋅ 𝑝𝑝1 + 𝑝𝑝2 ⇒ 𝑝𝑝𝑖𝑖 =
1

2𝑏𝑏
𝑎𝑎 − 𝑀𝑀𝑀𝑀𝑖𝑖 𝑝𝑝𝑖𝑖 .



Example: Cournot duopoly
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Suppose agent 𝑖𝑖 realizes that it influences price, solves: 

max𝑝𝑝𝑖𝑖(𝑎𝑎 − 𝑏𝑏 ⋅ 𝑝𝑝1 + 𝑝𝑝2 ) ⋅ 𝑝𝑝𝑖𝑖 − 𝑇𝑇𝑀𝑀𝑖𝑖 𝑝𝑝𝑖𝑖
𝑝𝑝𝑖𝑖 ≥ 0

Denote 𝑝𝑝−𝑖𝑖 as the decision of the competing agent, if 𝑝𝑝𝑖𝑖 > 0 then:

𝑝𝑝𝑖𝑖 =
1

2𝑏𝑏
𝑎𝑎 − 𝑀𝑀𝑀𝑀𝑖𝑖 𝑝𝑝𝑖𝑖 −

1
2

𝑝𝑝−𝑖𝑖

And due to the symmetry of agents we have 𝑝𝑝𝑖𝑖 = 𝑝𝑝−𝑖𝑖, and conclude that

𝑝𝑝𝑖𝑖 =
1

3𝑏𝑏
𝑎𝑎 − 𝑀𝑀𝑀𝑀𝑖𝑖 𝑝𝑝𝑖𝑖

We note that agents reduce their output below optimal in order to increase profitability



Market power

Market power: the strategic withholding of production from
electricity markets by producers with the intention of profitably
increasing prices

• Real problem in electricity markets
• Regulatory interventions (bid mitigation, price caps) can be used for 

mitigating market power ...
• ... but these interventions may create new problems (for example, the missing 

money problem)
• Strategic behavior of market agents typically analyzed using game theory (not 

optimization models)
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