## Economic Dispatch

Anthony Papavasiliou, National Technical University of Athens (NTUA)

Source: chapter 4, Papavasiliou [1]

#### Outline

- The economic dispatch model
- Competitive market equilibrium
- Modeling market equilibrium as an optimization problem

#### What is economic dispatch?

- Simplest resource allocation problem in electricity markets
- Model used in *real-time* electricity markets
  - Uniform price auctions
  - Repeated every five to fifteen minutes

#### An example

#### Consider the offers in the figure

- 1. Write the problem as a linear program
- 2. Write out the KKT conditions of the problem
- 3. Split the KKT conditions into three categories, depending on whether they correspond to
  - 1. A surplus maximization problem of buyers (quantity adjustment)
  - 2. A profit maximization problem of sellers (quantity adjustment)
  - 3. Market clearing conditions (price adjustment)
- 4. Propose a primal-dual optimal solution and confirm that it is optimal using the KKT conditions
- 5. Confirm that the market clearing price is indeed consistent with agent incentives



#### Question 1: linear program

The economic dispatch model is described as follows:

$$\max_{p,d} 90 \cdot d_1 + 40 \cdot d_2 + 20 \cdot d_3 - (12 \cdot p_1 + 28 \cdot p_2 + 80 \cdot p_3)$$

$$(\lambda): d_1 + d_2 + d_3 - p_1 - p_2 - p_3 = 0$$

$$(\mu_1): p_1 \le 30$$

$$(\mu_2): p_2 \le 35$$

$$(\mu_3): p_3 \le 25$$

$$(\nu_1): d_1 \le 10$$

$$(\nu_2): d_2 \le 40$$

$$(\nu_3): d_3 \le 25$$

$$p, d \ge 0$$

# Questions 2, 3: KKT conditions and their decomposition

Market clearing:

$$d_1 + d_2 + d_3 - p_1 - p_2 - p_3 = 0$$

# Questions 2, 3: KKT conditions and their decomposition

Profit maximization of sellers:

$$0 \le \mu_1 \perp 30 - p_1 \ge 0$$

$$0 \le \mu_2 \perp 35 - p_2 \ge 0$$

$$0 \le \mu_3 \perp 25 - p_3 \ge 0$$

$$0 \le p_1 \perp 12 + \mu_1 - \lambda \ge 0$$

$$0 \le p_2 \perp 28 + \mu_2 - \lambda \ge 0$$

$$0 \le p_3 \perp 80 + \mu_3 - \lambda \ge 0$$

# Questions 2, 3: KKT conditions and their decomposition

Surplus maximization of buyers:

$$0 \le \nu_1 \perp 10 - d_1 \ge 0$$

$$0 \le \nu_2 \perp 40 - d_2 \ge 0$$

$$0 \le \nu_3 \perp 25 - d_3 \ge 0$$

$$0 \le d_1 \perp -90 + \nu_1 + \lambda \ge 0$$

$$0 \le d_2 \perp -40 + \nu_2 + \lambda \ge 0$$

$$0 \le d_3 \perp -20 + \nu_3 + \lambda \ge 0$$

#### Question 4: prima-dual optimal solution

#### Primal optimal solution:

$$p_1^* = 30, p_2^* = 20, p_3^* = 0$$
  
 $d_1^* = 10, d_2^* = 40, d_3^* = 0$ 

Dual optimal solution:

$$\lambda^* = 28$$
 $\mu_1^* = 16, \mu_2^* = 0, \mu_3^* = 0$ 
 $\nu_1^* = 62, \nu_2^* = 12, \nu_3^* = 0$ 

We note that all KKT conditions are satisfied

#### Question 5: checking the incentives of agents

- From the point of view of producers:
  - Producer 1 is in the money and therefore wants to produce  $p_1^*=30$
  - Producer 2 is at the money and therefore indifferent about producing  $p_2^st=20$
  - Producer 3 is out of the money and therefore wants to produce  $p_3^{st}=0$

Similarly for consumers

## The economic dispatch model

#### Welfare maximizing economic dispatch

$$\begin{aligned} \max_{p,d} \sum_{l \in L} \int_0^{d_l} MB_l(x) dx - \sum_{g \in G} \int_0^{p_g} MC_g(x) dx \\ (\lambda) &: \sum_{l \in L} d_l - \sum_{g \in G} p_g \le 0 \\ (\nu_l) &: d_l \le D_l, l \in L \\ (\mu_g) &: p_g \le P_g, g \in G \\ p_g \ge 0, g \in G, d_l \ge 0, l \in L \end{aligned}$$

Increasing marginal cost function  $MC_g(\cdot)$ , decreasing marginal benefit function  $MB_l(\cdot)$ 

#### KKT conditions

$$0 \le p_g \perp -\lambda + MC_g(p_g) + \mu_g \ge 0, g \in G$$

$$0 \le d_l \perp \lambda - MB_l(d_l) + \nu_l \ge 0, l \in L$$

$$0 \le \mu_g \perp P_g - p_g \ge 0, g \in G$$

$$0 \le \nu_l \perp D_l - d_l \ge 0, l \in L$$

$$0 \le \lambda \perp \sum_{g \in G} p_g - \sum_{l \in I} d_l \ge 0$$

## System lambda

There exists a threshold  $\lambda$  such that:

- If  $0 < p_g < P_g$ ), then  $MC_g(p_g) = \lambda$ . If  $0 < d_l < D_l$ ), then  $MB_l(d_l) = \lambda$ .
- If  $p_g = 0$ , then  $MC_g(0) \ge \lambda$ . If  $d_l = 0$ , then  $MB_l(0) \le \lambda$ .
- If  $p_g = P_g$ , then  $MC_g(P_g) \le \lambda$ . If  $d_l = D_l$ , then  $MB_l(D_l) \ge \lambda$ .

**Proof: KKT conditions** 

 System lambda: marginal cost of the marginal generating unit (i.e. the generating unit which will supply the next unit of power at lowest cost)

#### Interpretation of KKT conditions

Optimal solution is matching cheapest generators with consumers who have greatest valuation (can you see why from the KKT conditions?)

#### Graphical illustration of KKT conditions



## Competitive market equilibrium

#### Path to deregulation

- Late 1970s: power systems are operated as vertically integrated regulated monopolies
- Before 1980s: Premature markets (e.g. Norway)
- 1982: Chile introduces a sport market
- 1988: British government privatizes public power sector in England and Wales
- 1990: Nordic market expands to include Sweden, Finland and Denmark
- New Zealand and Australia introduced spot markets
- The United States follow with California (CAISO), Pennsylvania-New Jersey-Maryland (PJM), Texas (ERCOT), New York (NYISO) and the Midwest (MISO)

#### Trading in real time

- Real-time markets cannot rely on bilateral negotiations (only takes a few minutes of imbalance for a blackout
- ... but they can rely on a uniform price auction that charges system lambda for power
- But why is system lambda the "right" price?



#### Definition of competitive market

- A market is **competitive** if:
  - Agents are price-taking
  - Variable cost is convex and the benefit is concave (which implies that marginal cost is? marginal benefit is?)
  - Agents have access to public information (prices)

#### Aggregate and marginal cost

**Aggregate cost** is the cheapest way to produce Q MW of power among a *collection* of producers  $TC_G(Q) = \min_p \sum_{g \in G} \int_0^{p_g} MC_g(x) dx$ 

$$TC_G(Q) = \min_p \sum_{g \in G} \int_0^{\rho_g} MC_g(x) dx$$

$$\mathrm{s.\,t.} \sum_{g \in G} p_g = Q$$

$$p_g \in \text{dom } MC_g, g \in G$$

Marginal cost:  $MC_G(Q) = TC'_G(Q)$ 

- Constraints imposed through domain of objective function (last constraint)
- What do we know about MC in competitive markets?
- What is the unit of measurement of TC and MC?

#### Merit order curve

Merit order curve: (increasing) system marginal cost curve



Source: Agora Energiewende

## Aggregate and marginal benefit

**Aggregate benefit** is most beneficial way to consume Q MW of power among a *collection* of consumers

$$TB_L(Q) = \max_d \sum_{l \in L} \int_0^{a_l} MB_l(x) dx$$

s. t. 
$$\sum_{l \in L} d_l = Q$$

 $d_l \in \text{dom } MB_l, l \in L$ 

Marginal benefit:  $MB_l(Q) = TB'_L(Q)$ 

#### Price and quantity adjustment

Mechanical system dynamics are governed by Newton's laws of motion

Price adjustment and quantity adjustment are the "laws of motion" for electricity markets





#### Price adjustment: graphical illustration



Any price different from  $\lambda^*$  creates opportunities for profitable trade

#### Price adjustment: mathematical description

When demand exceeds supply, upward pressure on *prices*When supply exceeds demand, downward pressure on *prices* 

#### **Market clearing condition:**

$$0 \le \lambda \perp \sum_{g \in G} p_g - \sum_{l \in L} d_l \ge 0$$

#### Quantity adjustment

Price-taking supplier will increase *quantity* produced if marginal cost ≤ price, decrease output otherwise:

$$\max_{p} \lambda \cdot p_g - \int_0^{p_g} MC_g(x) dx$$

$$(\mu_g): p_g \leq P_g$$

$$p_g \ge 0$$

Price-taking consumer will decrease *quantity* consumed if marginal benefit ≤ price, increase consumption otherwise:

$$\max_{d} \int_{0}^{d_{l}} MB_{l}(x) dx - \lambda \cdot d_{l}$$

$$(\nu_l): d_l \leq D_l$$

$$d_l \ge 0$$

# Equilibrium, market clearing price, competitive equilibrium, competitive price

- A market is in equilibrium when no profitable opportunities for trade exist
- The market clearing price is the price of a market in equilibrium
- An equilibrium in a competitive market is called a competitive equilibrium
- The price of a competitive market is the competitive price

#### Competitive markets are efficient

The competitive equilibrium results in an allocation which is optimal for the economic dispatch problem

**Proof:** Collect KKT conditions of quantity adjustment and market clearing condition of price adjustment:

Producers: 
$$0 \le p_g \perp -\lambda + MC_g(p_g) + \mu_g \ge 0, g \in G$$

$$0 \le \mu_g \perp P_g - p_g \ge 0$$
,  $g \in G$ 

Consumers: 
$$0 \le d_l \perp \lambda - MB_l(d_l) + \nu_l \ge 0, l \in L$$

$$0 \le v_l \perp D_l - d_l \ge 0, l \in L$$

Market clearing: 
$$0 \le \lambda \perp \sum_{g \in G} p_g - \sum_{l \in L} d_l \ge 0$$

Identical to KKT conditions of economic dispatch

## Producer and consumer surplus, welfare, efficiency

Suppose price is  $\lambda$ 

• **Producer surplus/profit**: profit of producers who are willing to sell  $\lambda q_G(\lambda) - \int_0^{q_G(\lambda)} MC_G(x) dx$ 

$$\lambda q_G(\lambda) - \int_0^{q_G(\lambda)} MC_G(x) dx$$

where  $q_G(\lambda)$  is quantity sold at price  $\lambda$ 

• Consumer surplus: surplus of consumers who are willing to buy

$$\int_{0}^{q_{L}(\lambda)} MB_{L}(x)dx - \lambda q_{L}(\lambda)$$

where  $q_L(\lambda)$  is quantity bought at price  $\lambda$ 

• Welfare: sum of producer and consumer surplus

## Graphical illustration of surplus



# Modeling market equilibrium as an optimization problem

#### Separable optimization

#### Consider the following problem

(Sep): 
$$\max_{x} \sum_{i=1}^{n} f_i(x_i)$$

$$(\rho_i): g_i(x_i) \le 0, i = 1, ..., n$$

$$(\lambda): \sum_{i=1}^{n} h_i(x_i) \le 0$$

- $x_i \in \mathbb{R}^n$ : private decisions
- $f_i: \mathbb{R}^{n_i} \to \mathbb{R}$ : concave differentiable
- $g_i: \mathbb{R}^{n_i} \to \mathbb{R}^{a_i}$  and  $h_i: \mathbb{R}^{n_i} \to \mathbb{R}^m$ : convex differentiable

#### Interpretation

- *m* limited resources/**commodities**, *n* agents
- Each agent decides  $x_i$ , uses  $h_i(x_i)$  of each of m resources
- For each resource, total consumption ≤ total production

#### KKT conditions

- Denote
  - $\nabla_{x_i} f_i(x_i) \in \mathbb{R}^{n_i}$ : gradient of  $f_i$
  - $\nabla_{x_i} g_i(x_i) \in \mathbb{R}^{a_i} \times \mathbb{R}^{n_i}$ : Jacobian matrix of  $g_i$  (likewise for  $\nabla_{x_i} h_i(x_i)$ )
- KKT conditions of (Sep):

$$\begin{split} -\nabla_{x_i} f_i(x_i) + \left(\nabla_{x_i} g_i(x_i)\right)^T \rho_i - \left(\nabla_{x_i} h_i(x_i)\right)^T \lambda &= 0, i = 1, \dots, n \\ 0 &\leq \rho_i \perp - g_i(x_i) \geq 0, i = 1, \dots, n \\ 0 &\leq \lambda \perp - \sum_{i=1}^n h_i(x_i) \geq 0 \end{split}$$

#### Market for multiple commodities

- Consider a competitive market for the m resources:
  - Producers are paid  $\lambda_i$  for selling commodity j
  - Consumers pay  $\lambda_i$  for buying commodity j
  - Each agent accepts price vector  $\lambda^*$  as *given* (not influenced by private decisions)
- Denote  $q_i$  as vector of resources procured (or sold, if negative) by agent i, then each agent solves:

(Profit-i): 
$$\max_{x_i,q_i} (f_i(x_i) - (\lambda^*)^T q_i)$$
$$(\rho_i): \qquad g_i(x_i) \le 0$$
$$(\lambda_i): \qquad h_i(x_i) = q_i$$

**Competitive equilibrium** (for multiple products): combination of prices  $\lambda^*$ , agent decisions  $x_i^*$ , commodity procurements  $q_i^*$ , such that:

- $(x_i^*, q_i^*)$  solve (Profit -i) given  $\lambda^*$ , and
- Market clearing holds:

$$0 \le \lambda^* \perp \sum_{i=1}^n q_i^* \le 0$$

# Modeling competitive market equilibrium via optimization

- Suppose KKT conditions are necessary and sufficient for the optimality of (Sep) and (Profit i):
  - 1. A competitive market equilibrium results in an optimal solution of (Sep), and
  - 2. a primal-dual solution to the KKT conditions of (Sep) is a competitive equilibrium

#### Proof

• Necessary and sufficient KKT conditions of (Profit -i):

$$-\nabla_{x_i} f_i(x_i) + \left(\nabla_{x_i} g_i(x_i)\right)^T \rho_i - \left(\nabla_{x_i} h_i(x_i)\right)^T \lambda = 0$$

$$\lambda^* - \lambda = 0$$

$$0 \le \rho_i \perp -g_i(x_i) \ge 0$$

$$h_i(x_i) = q_i$$

- Proceed by comparing KKT conditions of:
  - (Profit -i) for all i and market clearing condition
  - (*Sep*)

#### Example: 2-agent oligopoly

#### Consider the following market:

- Linear marginal benefit function,  $MB(Q) = a b \cdot Q$
- Two agents, with identical cost functions  $TC_1$  and  $TC_2$

Competitive market equilibrium obtained by solving:

$$\max_{p_1, p_2, d} a \cdot d - 0.5 \cdot b \cdot d^2 - TC_1(p_1) - TC_2(p_2)$$

$$p_1 + p_2 = d$$

$$p_1, p_2, d \ge 0$$

If  $p_1$ ,  $p_2>0$  and  $p_1=p_2$  (since agents are symmetric), then

$$MC_1(p_1) = MC_2(p_2) = a - b \cdot (p_1 + p_2) \Rightarrow p_i = \frac{1}{2b} (a - MC_i(p_i)).$$

#### Example: Cournot duopoly

Suppose agent i realizes that it influences price, solves:

$$\max_{p_i} (a - b \cdot (p_1 + p_2)) \cdot p_i - TC_i(p_i)$$
$$p_i \ge 0$$

Denote  $p_{-i}$  as the decision of the competing agent, if  $p_i > 0$  then:

$$p_i = \frac{1}{2b} (a - MC_i(p_i)) - \frac{1}{2} p_{-i}$$

And due to the symmetry of agents we have  $p_i=p_{-i}$ , and conclude that

$$p_i = \frac{1}{3b} \left( a - MC_i(p_i) \right)$$

We note that agents reduce their output below optimal in order to increase profitability

#### Market power

**Market power**: the strategic withholding of production from electricity markets by producers with the intention of *profitably* increasing prices

- Real problem in electricity markets
- Regulatory interventions (bid mitigation, price caps) can be used for mitigating market power ...
- ... but these interventions may create new problems (for example, the missing money problem)
- Strategic behavior of market agents typically analyzed using game theory (not optimization models)

#### References

[1] A. Papavasiliou, Optimization Models in Electricity Markets, Cambridge University Press

https://www.cambridge.org/highereducation/books/optimization-models-in-electricity-markets/0D2D36891FB5EB6AAC3A4EFC78A8F1D3#overview